On the Failure of the Bootstrap for Matching Estimators
نویسندگان
چکیده
Matching estimators are widely used for the evaluation of programs or treatments. Often researchers use bootstrapping methods for inference. However, no formal justification for the use of the bootstrap has been provided. Here we show that the bootstrap is in general not valid, even in the simple case with a single continuous covariate when the estimator is root-N consistent and asymptotically normally distributed with zero asymptotic bias. Due to the extreme non-smoothness of nearest neighbor matching, the standard conditions for the bootstrap are not satisfied, leading the bootstrap variance to diverge from the actual variance. Simulations confirm the difference between actual and nominal coverage rates for bootstrap confidence intervals predicted by the theoretical calculations. To our knowledge, this is the first example of a root-N consistent and asymptotically normal estimator for which the bootstrap fails to work. JEL Classification: C14, C21, C52
منابع مشابه
On the Second Order Behaviour of the Bootstrap of L_1 Regression Estimators
We consider the second-order asymptotic properties of the bootstrap of L_1 regression estimators by looking at the difference between the L_1 estimator and its first-order approximation, where the latter is the minimizer of a quadratic approximation to the L_1 objective function. It is shown that the bootstrap distribution of the normed difference does not converge (eit...
متن کاملAsymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کاملBootstrap confidence intervals of CNpk for type‑II generalized log‑logistic distribution
This paper deals with construction of confidence intervals for process capability index using bootstrap method (proposed by Chen and Pearn in Qual Reliab Eng Int 13(6):355–360, 1997) by applying simulation technique. It is assumed that the quality characteristic follows type-II generalized log-logistic distribution introduced by Rosaiah et al. in Int J Agric Stat Sci 4(2):283–292, (2008). Discu...
متن کاملLimiting Properties of Empirical Bayes Estimators in a Two-Factor Experiment under Inverse Gaussian Model
The empirical Bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. It was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. A Bootstrap analysis was performed to ill...
متن کاملInference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring
This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood...
متن کامل